Cyclic Voltammetry, Kinetics, Thermodynamic and Molecular Docking Parameters for the Interaction of Nickel Chloride with Diphenylthiocarbazone

Esam.A.Gomaa¹*
Adel.Z. EL-Sonbati²
Mostafa.A.Diah¹
Mohamed.S.EL-Ghareib³
Hanaa.M.Salam⁴

１．Introduction

Electron transfer processes are at the center of the reactivity of inorganic complexes [1]. Cyclic voltammetry used in determination mechanism of reactions, a number of electrons transferred through oxidation or reduction process, formal potential, the stoichiometry of a system, heterogeneous rate constants and diffusion coefficient of electroactive species [2].

Cyclic voltammetry is a simple, rapid, high sensitive technique, gives qualitative information about an electrochemical process [3]. It is carried out by measuring the resulting current as a function of the applied potential and powerful method for characterizing the electrochemical behavior of analytics that can be electrochemically oxidized or reduced [4].

Here, we have carried out studies on the redox chemistry of nickel(II) complexes of dithizone ligand in the presence of potassium ferrioxalate K₃Fe(Oxalate)₃ (KFOX) using gold electrode.

Gold electrodes behave similarly to platinum, but have limited usefulness in the positive potential range due to the oxidation of its surface. It has been very useful, however, for the preparation of modified electrodes containing surface structures known as self-assembled monolayers (SAMs).
Such complexes have an important role in bioinorganic chemistry and redox enzyme systems \[5, 6\]. The study of structural and binding features of nickel metal complexes can play an important role in better understanding of the biological process \[7\]. Redox properties of a drug can give insight into its metabolic or pharmaceutical activity \[7\].

Cyclic voltammetry for nickel salts is necessary as fast technique and gives analytical data about the electrochemical redox reactions for nickel salts with active organic ligands in aqueous media. The complexity ability can be followed from the change in both peak heights and wave potentials for the selected cyclic voltammograms. The shift in half wave potentials can also be applied for studying the complex behaviors in different solution phases. Other authors use different techniques for studying the complication results from interaction between metal ion and organic ligands, like conductivity, potentiometry, polarography, UV and visible spectroscopy \[8\].

2. Experimental

Docking Server \[9\] Gasteiger partial charges were added to the ligand atoms. Non-polar hydrogen atoms were merged, and rotatable bonds were defined. Docking calculations were carried out on dithizone protein model. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of AutoDock tools \[10\]. Affinity grid points and 0.375 Å spacing were generated using the Autogrid program \[11\]. Auto Dock parameter set- and distance-dependent dielectric functions were used in the calculation of the van der Waals and the electrostatic terms, respectively. Docking simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis & Wets local search method \[12\]. Initial position, orientation, and torsions of the ligand molecules were set randomly. All rotatable torsions were released during docking. Each docking experiment was derived from 10 different runs that were set to terminate after a maximum of 250000 energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied.

3. Results and Discussion

In the absence of potassium ferrioxalate nickel ions does not show any peak at the used potential region. In presence of potassium ferrioxalate two redox couples at different potentials were obtained due to the formation of two types of nickel –oxaloferate (Ni-Ox-Fe) as explained in literature on the use of potassium ferricyanide \[11, 12\].

The two redox couples are attributed to \(\text{[Ni(II)-Ox-Fe(III)]} / \text{[Ni(III)-Ox-Fe(III)]}\) and \(\text{[Ni(II)-Ox-Fe(III)]} / \text{[Ni(II)-Ox-Fe(II)]}\). The possible electrode reaction mechanisms for the double couple as explained before in case of using potassium ferricyanide are:

\[
\begin{align*}
\text{Ni(II)-Fe(III)} + e^{-} & \rightleftharpoons \text{Ni(II)-Fe(II)} + e^{-} \quad \text{(1)} \\
\text{K[Ni(II)-Ox-Fe(III)]} & \rightleftharpoons \text{K[Ni(II)-Ox-Fe(II)]} \quad \text{(2)}
\end{align*}
\]

Where the nickel in the coordinated form in Equation 1 is first reduced and is followed be the decrease of ferric ion valence in Equation 2 to ferrous ion.

The redox reaction of NiCl₂ using gold working electrode (GWE) was studied at equilibrium in presence of isolating and supporting media of citric acid (0.1M) concentration at different temperatures (293.15, 303.15, and 313.15 K).

The obtained cyclic voltammograms were analyzed \[11-16\] by:

\[
i_p = \frac{(2.69\times10^{-4}) n^{3/2} AD^{1/2} \mu^{1/2}}{C}
\]

where \(i_p\) is the measured current in Ampere, \(A\) is the surface electrode area, \(D\) is the diffusion coefficient in \(\text{cm}^2/\text{s}\), \(\mu\) the scan rate in \(\text{V/s}\) and \(C\) is the Ni ions concentration.

The voltammograms were carried out by the use of gold working electrode (GWE) from starting potential of 1.5V to -1.5V at 293.15K, 1.0V to -1.0V at 303.15K and 0.8V to -0.8V at 313.15 K.

The Ni waves were appeared here in presence of potassium ferrioxalate; otherwise the Ni waves cannot be detected.

The measured cyclic voltammograms depend on NiCl₂ movement and transfer of electrons.

\[
k_f = k_e \exp \left(-\frac{\alpha nF}{RT}\right) (E-E^\circ) \quad \text{(4)}
\]

where \(k_f\) in Equation 4 is the forward electron rate constant, \(k_e\) is the standard electron transfer rate constant for the interaction, \(E\) is reduction value for the potential and \(\alpha\) is the transfer coefficient \[17\]. By reversing the potential, the reduced species at the gold working electrode (GWE) is oxidized back to the beginning point.

The electron transfer rate constant for the reverse reaction \(K_r\) (oxidation) controlled by the use of Equation 5:

\[
k_r = k_e \exp \left((1-\alpha)nF/RT\right) (E-E^\circ) \quad \text{(5)}
\]

Reversible reactions give separation in potentials with value equal \(58/n\) (at 25 °C). This relation can be used for evaluating the number of electrons consumed and liberated in the redox reactions. For lot of many reversible reactions, the reduction will be faster for obtaining the reduced and oxidized species in equilibrium.

The equilibrium between the twoionic species in solutions can be illustrated by Nernst Equation 6:
\[E = E^0 - \ln \left(\frac{[R]}{[O]} \right) \]

where \([R]\) and \([O]\) are the reduced and oxidized forms concentration. Where the reaction is fast, reversible reaction to another place. The reaction is reversible if \(K^0 \) is greater than 0.32 \(\mu^{1/2}\) \([18, 19]\), where \(\mu\) is the scan rate. Reactions where cyclic voltammograms are a part from each other with increasing scan rates are quasi-reversible reactions.

Some reactions occur by bond breaking, indicating an irreversible reaction. For quasi reversible reactions, peak current are not proportional to \(\mu^{1/2}\). Some scientists used half wave potentials for reversible indication for reactions Equation 7:

\[E_{1/2} = E_{1/2} \pm \left(\frac{28}{n} \right) \mu v \]

Positive sign is for reduction process.

3.1. Electrochemical Behavior of NiCl\(_2\) in Citric Acid (0.1M) in Presence of KFe(OX), Potassium Ferrioxalate

The cyclic voltammograms for NiCl\(_2\) with different concentration using gold working electrode in 0.1 M citric acid supporting electrolyte was studied and the data listed in Figure 1. At the measured temperature, we observe one new reduction wave for NiCl\(_2\) and one oxidation peak differ from the peaks necessary for the gold electrode alone in 0.1M citric acid.

The reduction mechanism for nickel salt was suggested to proceed as follows:

\[\text{Ni}^{2+} + 2e^- = \text{Ni} \]

(8)

The consuming of two electron mechanism in Equation 8 passed through one step at the approximately 1.5V at 293.15K.

The oxidation peaks at approximately -0.5V explaining the reverse direction of Equation 6 indicating its opposite reaction.

The electrochemical kinetic parameters and the scan rates like solution electron transfer rate constant \(K_s\), anodic & cathodic surface coverage (\(r_a, r_c\)), cathodic and anodic quantity of electricity (\(Q_c, Q_a\)) and \(\alpha_n\) are represented in Table 1 indicating the increase in all the parameters cited by the decrease of different scan rates. Figure 1 gave an indication that the electrochemical processes discussed for NiCl\(_2\) in 0.1M citric acid is reversible.

3.2. Electrochemical behavior of NiCl\(_2\) in presence of dithizone (diphenylthiocarbazone) as complexing agent

The cyclic voltammograms of NiCl\(_2\) at different concentrations of dithizone as ligand from the range of 2.38 X 10\(^{-4}\) to 8.89 X 10\(^{-4}\) M. are shown in Figure 2. By increasing the concentration of dithizone, there is a shift in NiCl\(_2\) reduction peak to more negative potentials. Also positive shift in the oxidation peak was observed. The stability constant (\(B\)) and complexion Gibbs free energies are evaluated by the Equation 9:

\[\Delta G = -2.303 \text{ RT log } \beta_{MX} \]

(9)

The results in Table 2 indicate increasing in complexation ability at 293.15K by the increase in dithizone ligand concentration.
Table 1. Electrochemical parameters of NiCl$_2$ in acidic media at 293.15 K.

<table>
<thead>
<tr>
<th>M x10$^{-3}$</th>
<th>Ep,a (volt)</th>
<th>(-)Ep,c (volt)</th>
<th>ΔEp (volt)</th>
<th>(-)ipa x10$^{-4}$ (Amp)</th>
<th>ipc x10$^{-4}$ (Amp)</th>
<th>ipa/ipc</th>
<th>Da x10$^{-4}$</th>
<th>Dc x10$^{-4}$</th>
<th>(-)Ep/2</th>
<th>αna</th>
<th>ks x10$^{-9}$ (mol/cm2)</th>
<th>(+) Qc x10$^{-5}$ (mol/cm2)</th>
<th>(-)Qa x10$^{-5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.6</td>
<td>0.1316</td>
<td>0.4117</td>
<td>0.5433</td>
<td>9.20</td>
<td>0.115</td>
<td>0.799</td>
<td>3.4258</td>
<td>5.37</td>
<td>0.2886</td>
<td>0.3813</td>
<td>2.90</td>
<td>7.6798</td>
<td>6.1362</td>
</tr>
<tr>
<td>64.9</td>
<td>0.163</td>
<td>0.227</td>
<td>0.39</td>
<td>9.61</td>
<td>0.121</td>
<td>0.794</td>
<td>2.45439</td>
<td>3.89</td>
<td>0.1224</td>
<td>0.4483</td>
<td>0.129</td>
<td>8.0703</td>
<td>6.408</td>
</tr>
<tr>
<td>76.9</td>
<td>0.0669</td>
<td>0.435</td>
<td>0.4974</td>
<td>0.101</td>
<td>0.151</td>
<td>0.664</td>
<td>1.914</td>
<td>4.54</td>
<td>0.3069</td>
<td>0.3692</td>
<td>1.13</td>
<td>0.10096</td>
<td>6.704</td>
</tr>
<tr>
<td>88.6</td>
<td>0.0462</td>
<td>0.424</td>
<td>0.4702</td>
<td>0.116</td>
<td>0.152</td>
<td>0.7647</td>
<td>1.926</td>
<td>3.29</td>
<td>0.313</td>
<td>0.4227</td>
<td>0.564</td>
<td>0.10129</td>
<td>7.476</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0319</td>
<td>0.426</td>
<td>0.4579</td>
<td>0.116</td>
<td>0.163</td>
<td>0.7116</td>
<td>1.513</td>
<td>2.99</td>
<td>0.3242</td>
<td>0.4608</td>
<td>0.439</td>
<td>0.10888</td>
<td>7.748</td>
</tr>
<tr>
<td>1.11</td>
<td>0.0264</td>
<td>0.437</td>
<td>0.4634</td>
<td>0.103</td>
<td>0.156</td>
<td>0.6619</td>
<td>96.32</td>
<td>2.20</td>
<td>0.3287</td>
<td>0.433</td>
<td>0.408</td>
<td>0.10378</td>
<td>6.8689</td>
</tr>
<tr>
<td>1.22</td>
<td>-0.0024</td>
<td>0.437</td>
<td>0.4546</td>
<td>0.117</td>
<td>0.190</td>
<td>0.6157</td>
<td>1.0351</td>
<td>2.73</td>
<td>0.3249</td>
<td>0.4187</td>
<td>0.253</td>
<td>0.12694</td>
<td>7.8155</td>
</tr>
</tbody>
</table>

Table 2. Electrochemical parameters of complex formation at 293.15 K.

<table>
<thead>
<tr>
<th>[L] x10$^{-4}$</th>
<th>Ep,a (volt)</th>
<th>(-)Ep,c (volt)</th>
<th>ΔEp (volt)</th>
<th>(-)ipa x10$^{-5}$ (Amp)</th>
<th>ipc x10$^{-5}$ (Amp)</th>
<th>ipa/ipc</th>
<th>Da x10$^{-10}$</th>
<th>Dc x10$^{-10}$</th>
<th>(-)Ep/2</th>
<th>αna</th>
<th>ks x10$^{-9}$ (mol/cm2)</th>
<th>(+) Qc x10$^{-5}$ (mol/cm2)</th>
<th>(-)Qa x10$^{-5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.38</td>
<td>0.0207</td>
<td>0.455</td>
<td>0.4757</td>
<td>8.79</td>
<td>1.89</td>
<td>0.4647</td>
<td>58.297</td>
<td>2.70</td>
<td>0.3424</td>
<td>0.4167</td>
<td>0.565</td>
<td>1.2623</td>
<td>9.56</td>
</tr>
<tr>
<td>4.65</td>
<td>0.0242</td>
<td>0.513</td>
<td>-0.4888</td>
<td>0.116</td>
<td>1.95</td>
<td>0.5946</td>
<td>1.0085</td>
<td>2.85</td>
<td>0.3755</td>
<td>-0.0528</td>
<td>1.78</td>
<td>1.2974</td>
<td>9.83</td>
</tr>
<tr>
<td>6.82</td>
<td>0.0435</td>
<td>0.567</td>
<td>0.6105</td>
<td>9.62</td>
<td>1.78</td>
<td>0.5407</td>
<td>69.776</td>
<td>2.39</td>
<td>0.4038</td>
<td>0.2875</td>
<td>6.37</td>
<td>1.1868</td>
<td>8.99</td>
</tr>
<tr>
<td>8.89</td>
<td>0.0436</td>
<td>0.6136</td>
<td>0.6572</td>
<td>7.64</td>
<td>1.50</td>
<td>0.5101</td>
<td>44.009</td>
<td>1.69</td>
<td>0.4323</td>
<td>0.2587</td>
<td>12.8</td>
<td>9.9893</td>
<td>7.57</td>
</tr>
</tbody>
</table>
Table 3. Scan rate effect on the kinetic parameters of complex at 293.15 K.

\(v \) \(\times 10^{-3} \)	\(M \times 10^{-3} \)	\(\text{Ep}_{a} \) (volt)	\((-) \text{Ep}_{c} \) (volt)	\(\Delta \text{Ep} \) (volt)	\((+) \text{ipa} \times 10^{-6} \) (Amp)	\(\text{ipc} \times 10^{-6} \) (Amp)	\(\text{ipa/ ipc} \)	\(\text{Da} \times 10^{11} \)	\(\text{Dc} \times 10^{12} \)	\((+) \text{Epc/2} \)	\(\text{ana} \times 10^{-5} \)	\(\text{ks} \times 10^{6} \) (mol/cm²)	\((+) \text{Qc} \times 10^{-5} \) (mol/cm²)	\((-) \text{Qa} \times 10^{-5} \) (mol/cm²)		
0.01	1.22	0.863	0.379	1.24	2.26	4.52	5.00+4	3.8578	1.5404	0.3471	1.47	98.1	3.0149	2.28	15.088	11.4
0.02	1.22	0.8918	0.395	1.287	2.94	6.26	4.6965	3.2585	1.4773	0.3687	1.78	3.63	2.0878	1.58	9.8052	7.43
0.05	1.22	0.9286	0.519	1.448	4.09	0.246	1.6636	2.5274	9.1329	0.4509	0.69	214	3.2831	2.49	5.4616	4.14

Table 4. Electrochemical parameters of NiCl₂ in acidic media at 303.15 K.

\(M \times 10^{-3} \)	\(\text{Ep}_{a} \) (volt)	\((-) \text{Ep}_{c} \) (volt)	\(\Delta \text{Ep} \) (volt)	\(\text{ipa} \times 10^{-6} \) (Amp)	\(\text{ipc} \times 10^{-6} \) (Amp)	\(\text{ipa/ ipc} \)	\(\text{Da} \times 10^{11} \)	\(\text{Dc} \times 10^{12} \)	\(\text{Epc/2} \)	\(\text{ana} \times 10^{-5} \)	\(\text{ks} \times 10^{6} \) (mol/cm²)	\((+) \text{Qc} \times 10^{-5} \) (mol/cm²)	\(\text{Ga} \times 10^{10} \) (mol/cm²)	\(\text{Qa} \times 10^{-6} \)	
1	0.1901	0.0191	0.2092	4.09	1.96	2.0862	1.8777	4.3142	0.0136	1.484	5.9179	1.3529	1.0248	2.8226	2.1379
1.22	0.1814	0.0089	0.1904	4.97	1.71	2.9156	1.8635	2.1921	0.0175	1.8281	3.2688	1.1762	0.89083	3.4292	-2.5973
1.43	0.1809	0.0208	0.2017	5.55	2.65	2.0922	1.6895	3.8597	0.0081	1.6768	5.1557	1.8282	1.3847	3.8249	2.897
The rate constant for electron transfer k_e are increased by the increase of dithizone ligand concentration indicating the acceleration of the complex formation.

![Figure 2](image-url)
Figure 2. Cyclic voltamogram of NiCl$_2$ (0.1M) with dithizone ligand at 293.15K.

Many sharp redox peaks of nickel ion on adding potassium ferrioxalate using gold electrode at 0.5V as reduction waves as shown in **Figure 2**.

Effect of scan rates on complexation was studied and the redox mechanism was presented in **Table 3** and **Figure 3** indicating quasi reversible and diffusion mechanisms.

![Figure 3](image-url)
Figure 3. Scan rate of dithizone–NiCl$_2$ complex at 293.15K.

At 303.15 K, the oxidation peaks was observed at approximately -0.033V as shown in **Figure 4** and the electrochemical kinetic parameters were determined and are listed in **Table 4**. By adding different concentrations of dithizone ligand from the range of 2.33X10$^{-4}$ to 5.62X10$^{-4}$ M we noted shift and increasing on the peak of redox reaction suggesting the formation of complexes.
The peak of complex decreased by increasing the concentration of dithizone ligand as shown in Figure 5 and the complex parameters are tabulated in Table 5.

Scan rate effect on complex formation was studied and the redox mechanism was presented in Table 6 and Figure 6 indicating quasi reversible and diffusion mechanisms.
Table-5. Electrochemical parameters of complex formation at 303.15 K.

<table>
<thead>
<tr>
<th>$[^{[L]}]_{x10^4}$</th>
<th>Ep,a (volt)</th>
<th>(-)Ep,c (volt)</th>
<th>ΔEp (volt)</th>
<th>ipa $x10^4$ (Amp)</th>
<th>ipc $x10^6$ (Amp)</th>
<th>ipa/ipc</th>
<th>Da $x10^{15}$</th>
<th>Dc $x10^{14}$</th>
<th>(-)Ep/2</th>
<th>αn</th>
<th>ks $x10^4$ (mol/cm²)</th>
<th>(+) Qc $x10^4$ (mol/cm²)</th>
<th>(-)Qc $x10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.33</td>
<td>0.2107</td>
<td>0.0387</td>
<td>0.2693</td>
<td>7.69</td>
<td>8.53</td>
<td>0.9018</td>
<td>3.2491</td>
<td>3.9955</td>
<td>0.0148</td>
<td>1.1047</td>
<td>4.91</td>
<td>5.882</td>
<td>4.4551</td>
</tr>
<tr>
<td>3.45</td>
<td>0.2117</td>
<td>0.0758</td>
<td>0.2875</td>
<td>6.01</td>
<td>5.66</td>
<td>1.0613</td>
<td>1.9834</td>
<td>1.7607</td>
<td>0.0249</td>
<td>0.9525</td>
<td>4.29</td>
<td>3.9047</td>
<td>2.9575</td>
</tr>
<tr>
<td>4.55</td>
<td>0.2119</td>
<td>0.0811</td>
<td>0.2931</td>
<td>3.78</td>
<td>3.45</td>
<td>1.0949</td>
<td>0.7854</td>
<td>0.65519</td>
<td>0.0384</td>
<td>1.1355</td>
<td>5.18</td>
<td>2.3819</td>
<td>1.8041</td>
</tr>
<tr>
<td>5.62</td>
<td>0.2005</td>
<td>0.1184</td>
<td>0.3188</td>
<td>1.71</td>
<td>1.49</td>
<td>1.1513</td>
<td>0.16128</td>
<td>0.12168</td>
<td>0.0638</td>
<td>0.8887</td>
<td>1.98</td>
<td>1.0264</td>
<td>0.77746</td>
</tr>
</tbody>
</table>

Table-1. Scan rate kinetic parameters of complex at 303.15 K.

<table>
<thead>
<tr>
<th>ν</th>
<th>M $x10^3$</th>
<th>Ep,a (volt)</th>
<th>(-)Ep,c (volt)</th>
<th>ΔEp (volt)</th>
<th>(-)ipa $x10^6$ (Amp)</th>
<th>ipc $x10^6$ (Amp)</th>
<th>ipa/ipc</th>
<th>Da $x10^{15}$</th>
<th>Dc $x10^{14}$</th>
<th>(-)Ep/2</th>
<th>αn</th>
<th>ks $x10^2$</th>
<th>(+) Qc $x10^2$ (mol/cm²)</th>
<th>(-)Qc $x10^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.43</td>
<td>0.0939</td>
<td>0.2995</td>
<td>0.39</td>
<td>0.0894</td>
<td>0.701</td>
<td>0.1276</td>
<td>0.44</td>
<td>2.698</td>
<td>0.2744</td>
<td>1.94</td>
<td>0.057</td>
<td>4.835</td>
<td>0.37</td>
</tr>
<tr>
<td>0.02</td>
<td>1.43</td>
<td>0.1374</td>
<td>0.3399</td>
<td>0.48</td>
<td>1.28</td>
<td>0.3075</td>
<td>45.04</td>
<td>47.63</td>
<td>0.284</td>
<td>0.07</td>
<td>1.14</td>
<td>14.36</td>
<td>1.09</td>
<td>4.161</td>
</tr>
<tr>
<td>0.05</td>
<td>1.43</td>
<td>0.20983</td>
<td>0.4196</td>
<td>0.63</td>
<td>0.0419</td>
<td>0.477</td>
<td>0.0878</td>
<td>0.02</td>
<td>0.25</td>
<td>4.16</td>
<td>5.26</td>
<td>0.65846</td>
<td>0.05</td>
<td>0.057806</td>
</tr>
</tbody>
</table>

Table-7. Electrochemical parameters of NiCl₂ in acidic media at 313.15K.

<table>
<thead>
<tr>
<th>M $x10^3$</th>
<th>Ep,a (volt)</th>
<th>Ep,c (volt)</th>
<th>ΔEp (volt)</th>
<th>(-)ipa $x10^6$ (Amp)</th>
<th>ipc $x10^6$ (Amp)</th>
<th>ipa/ipc</th>
<th>Da $x10^{15}$</th>
<th>Dc $x10^{14}$</th>
<th>Epc/2</th>
<th>αn</th>
<th>ks $x10^3$</th>
<th>(+) Qc $x10^3$ (mol/cm²)</th>
<th>(-)Qc $x10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.526</td>
<td>0.3109</td>
<td>0.3095</td>
<td>0.2514</td>
<td>6.00</td>
<td>7.13</td>
<td>0.8407</td>
<td>1.4553</td>
<td>2.06</td>
<td>0.0972</td>
<td>1.3298</td>
<td>7.32</td>
<td>5.0821</td>
<td>3.85</td>
</tr>
<tr>
<td>0.769</td>
<td>0.2997</td>
<td>0.306</td>
<td>0.2396</td>
<td>5.81</td>
<td>7.38</td>
<td>0.7875</td>
<td>0.64076</td>
<td>1.03</td>
<td>0.1009</td>
<td>1.2273</td>
<td>4.01</td>
<td>5.2614</td>
<td>3.98</td>
</tr>
<tr>
<td>1.00</td>
<td>0.2875</td>
<td>0.2509</td>
<td>0.2366</td>
<td>5.98</td>
<td>8.92</td>
<td>0.6703</td>
<td>0.40661</td>
<td>0.892</td>
<td>0.0979</td>
<td>1.0651</td>
<td>3.28</td>
<td>6.3537</td>
<td>4.81</td>
</tr>
<tr>
<td>1.22</td>
<td>0.2776</td>
<td>0.0511</td>
<td>0.2265</td>
<td>6.02</td>
<td>8.56</td>
<td>0.7033</td>
<td>0.27328</td>
<td>0.552</td>
<td>0.0934</td>
<td>1.1883</td>
<td>2.26</td>
<td>6.0992</td>
<td>4.62</td>
</tr>
<tr>
<td>1.43</td>
<td>0.2713</td>
<td>0.0499</td>
<td>0.2213</td>
<td>6.49</td>
<td>9.51</td>
<td>0.6819</td>
<td>0.23121</td>
<td>0.497</td>
<td>0.0923</td>
<td>1.1825</td>
<td>1.94</td>
<td>6.7778</td>
<td>5.13</td>
</tr>
</tbody>
</table>
Figure 6. Scan rate of dithizone–NiCl₂ complex at 303.15K.

Figure 1. Cyclic voltamogram of NiCl₂ (0.1M) in citric acid media at 313.15K.

At 313.15K the oxidation peak at approximately 0.1V as shown in Figure 7 and the electrochemical kinetic parameters are presented in Table 7.

When started adding different concentrations of dithizone ligand from the range of 1.37×10^{-4} to 7.69×10^{-4} M we observed shift in redox peak as shown in Figure 8 which explained the formation of complex. We listed the complex electrochemical kinetic parameters in Table 8.
Table-2. Electrochemical parameters of complex formation at 313.15K.

<table>
<thead>
<tr>
<th>[L] x10^4</th>
<th>Ep,a (volt)</th>
<th>Ep,c (volt)</th>
<th>∆Ep (volt)</th>
<th>(-)ipa x10^4 (Amp)</th>
<th>ipc x10^4 (Amp)</th>
<th>ipa/ipc</th>
<th>Da x10^{11}</th>
<th>Dc x10^{11}</th>
<th>Epc/2</th>
<th>α</th>
<th>ks x10^4</th>
<th>Γc x10^9 (mol/cm²)</th>
<th>(+) Qc x10^8</th>
<th>Γa x10^9 (mol/cm²)</th>
<th>(-)Qa 10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37</td>
<td>0.3202</td>
<td>0.0363</td>
<td>0.2839</td>
<td>11.4</td>
<td>0.461</td>
<td>24.8603</td>
<td>7.2026</td>
<td>0.117</td>
<td>0.04862</td>
<td>4.0533</td>
<td>5.56</td>
<td>0.32816</td>
<td>2.49</td>
<td>8.158</td>
<td>6.18</td>
</tr>
<tr>
<td>2.70</td>
<td>0.3108</td>
<td>0.0498</td>
<td>0.2609</td>
<td>7.38</td>
<td>0.281</td>
<td>26.2622</td>
<td>2.9885</td>
<td>0.0433</td>
<td>0.0542</td>
<td>11.2321</td>
<td>3.69</td>
<td>0.20009</td>
<td>1.52</td>
<td>5.2549</td>
<td>3.98</td>
</tr>
<tr>
<td>4.00</td>
<td>0.3107</td>
<td>0.0517</td>
<td>0.279</td>
<td>8.11</td>
<td>0.684</td>
<td>11.8532</td>
<td>3.6118</td>
<td>0.257</td>
<td>0.04867</td>
<td>2.7938</td>
<td>6.26</td>
<td>0.48738</td>
<td>5.69</td>
<td>5.777</td>
<td>4.38</td>
</tr>
<tr>
<td>5.26</td>
<td>0.3106</td>
<td>0.01</td>
<td>0.3067</td>
<td>7.34</td>
<td>0.772</td>
<td>9.5101</td>
<td>2.9094</td>
<td>0.327</td>
<td>0.0387</td>
<td>1.7459</td>
<td>8.33</td>
<td>0.54996</td>
<td>4.17</td>
<td>5.2902</td>
<td>3.96</td>
</tr>
<tr>
<td>6.49</td>
<td>0.2999</td>
<td>-0.0035</td>
<td>0.3055</td>
<td>6.45</td>
<td>1.37</td>
<td>4.6967</td>
<td>2.2829</td>
<td>1.03</td>
<td>0.0219</td>
<td>1.9673</td>
<td>16.6</td>
<td>0.97789</td>
<td>7.41</td>
<td>4.5929</td>
<td>3.48</td>
</tr>
<tr>
<td>7.69</td>
<td>0.2987</td>
<td>-0.0106</td>
<td>0.3093</td>
<td>6.58</td>
<td>1.72E</td>
<td>3.8326</td>
<td>2.3788</td>
<td>1.62</td>
<td>0.0229</td>
<td>1.4934</td>
<td>20.1</td>
<td>1.2233</td>
<td>9.27</td>
<td>4.6883</td>
<td>3.55</td>
</tr>
</tbody>
</table>

Table-9. Scan rate kinetic parameters of complex at 313.15K.

<table>
<thead>
<tr>
<th>v</th>
<th>M x10^4</th>
<th>Ep,a (volt)</th>
<th>Ep,c (volt)</th>
<th>∆Ep (volt)</th>
<th>(-)ipa x10^2 (Amp)</th>
<th>ipc x10^2 (Amp)</th>
<th>ipa/ipc</th>
<th>Da x10^{11}</th>
<th>Dc x10^{11}</th>
<th>Epc/2</th>
<th>α</th>
<th>ks x10^4</th>
<th>Γc x10^9 (mol/cm²)</th>
<th>(+) Qc x10^8</th>
<th>Γa x10^9 (mol/cm²)</th>
<th>(-)Qa 10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1. 43</td>
<td>0.2894</td>
<td>0.0409</td>
<td>0.2485</td>
<td>4.57</td>
<td>3.09</td>
<td>1.4764</td>
<td>2.2929</td>
<td>1.0519</td>
<td>0.08</td>
<td>1.2811</td>
<td>10.9</td>
<td>4.4089</td>
<td>3.34</td>
<td>6.5094</td>
<td>4.93</td>
</tr>
<tr>
<td>0.02</td>
<td>1. 43</td>
<td>0.2702</td>
<td>0.0697</td>
<td>0.2005</td>
<td>2.78</td>
<td>0.512</td>
<td>5.4286</td>
<td>2.1193</td>
<td>0.071916</td>
<td>0.0789</td>
<td>5.4498</td>
<td>1.53</td>
<td>1.8228</td>
<td>1.38</td>
<td>9.8952</td>
<td>7.49</td>
</tr>
<tr>
<td>0.01</td>
<td>1. 43</td>
<td>0.26</td>
<td>0.0873</td>
<td>0.1728</td>
<td>1.65</td>
<td>0.132</td>
<td>12.4656</td>
<td>1.4967</td>
<td>0.00963</td>
<td>0.0918</td>
<td>11.2446</td>
<td>0.339</td>
<td>0.94339</td>
<td>0.715</td>
<td>11.759</td>
<td>8.91</td>
</tr>
</tbody>
</table>
Complexation scan rate effect was studied and the redox mechanism was presented in Table 9 and Figure 9 indicating quasi reversible and diffusion mechanism.

All the cyclic voltammetry date show decrease in their values by decrease of the scan rate especially the value of k_s, the rate constant for electron transfer which indicate that the reaction is diffusion controlled.

3.3. Electrochemical Behavior and Thermodynamic Parameters for Dithizone-Ni Complex

In this work, we are studying the electrochemical behavior of the complexation between dithizone ligand and NiCl$_2$ at different temperature (293.15, 303.15, and 313.15 K).

A stability constant is a measure of the strength of the interaction between the reagents that come together to form the complex. The stability constants (β_{MX}) for nickel chloride complexes are calculated by applying Equation 10:

$$
\Delta E^\circ = E^\circ C - E^\circ M = 2.303 \left(\frac{RT}{nF}\right) \cdot \left(\log \beta_{MX} + j \log C_x\right)
$$

where $E^\circ M$ is the formal peak potential of metal in the absence of ligand, $E^\circ C$ is the formal peak potential of metal complex after each addition of dithizone ligand, R is a gas constant (8.314 J mol$^{-1}$K$^{-1}$), T is the absolute temperature, j is the coordination number of the stoichiometric complex and C_x is the concentration of ligand in the solution.

The formal potential E° can be found as the midway between the two cyclic voltammetry peaks comprising the voltammogram by Equation 11:

$$
E^\circ = \frac{E_{pa} + E_{pc}}{2}
$$

where both E_{pa} and E_{pc} are anodic peak potential and cathodic peak potential, respectively.
The Gibbs free energy of interaction for nickel chloride with dithizone were calculated from stability constant ($β_{MX}$) using Equation 12 [14, 20-28]:

$$
\Delta G = -2.303 \text{RT} \log β_{MX}
$$

(12)

All equilibrium constant vary with temperature, so the enthalpy ($ΔH$) of interaction for NiCl$_2$ with dithizone ligand was calculated by using Van’t Hoff Equation 13:

$$
\log (β_{MX} \text{ at } T_2)/β_{MX} \text{ at } (T_1)) = (ΔH/2.303)/(T_2/T_1) - T_1
$$

(13)

where $β_{MX}$ is the stability constant at different temperatures.

The entropy ($ΔS$) at different temperatures are calculated by using Equation 14:

$$
ΔS = (ΔH-ΔG)/T
$$

(14)

The thermodynamic parameters of nickel Chloride with dithizone at different temperatures (293.15, 303.15, and 313.15 K) are listed in Tables 10-12 respectively.

<table>
<thead>
<tr>
<th>Table 10. Cyclic voltammetry data of dithizone and NiCl$_2$ complex at 299.15 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>[L] X10$^+$</td>
</tr>
<tr>
<td>2.38</td>
</tr>
<tr>
<td>4.65</td>
</tr>
<tr>
<td>6.82</td>
</tr>
<tr>
<td>8.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 11. Cyclic voltammetry data of dithizone and NiCl$_2$ complex at 303.15 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>[L] X10$^+$</td>
</tr>
<tr>
<td>2.33</td>
</tr>
<tr>
<td>3.45</td>
</tr>
<tr>
<td>4.55</td>
</tr>
<tr>
<td>5.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 12. Cyclic voltammetry data of dithizone and NiCl$_2$ complex at 313.15 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>[L] X10$^+$</td>
</tr>
<tr>
<td>1.18</td>
</tr>
<tr>
<td>2.33</td>
</tr>
<tr>
<td>3.45</td>
</tr>
<tr>
<td>4.55</td>
</tr>
<tr>
<td>5.62</td>
</tr>
<tr>
<td>6.67</td>
</tr>
</tbody>
</table>

The different thermodynamic data given in Table 10, Table 11, Table 12, are calculated from the cyclic voltammetry measured voltammograms and following equations, Equation 10, Equation 11 and Equation 12.

The Gibbs free energies for the complex interaction between NiCl$_2$ and dithizone are slightly increased by the increase of temperature indicating the increase of the kinetic energy of the interacting system. The entropies of solvation of the complex formed gave not sufficient indication because of their small values.

3.4. Molecular Docking

Molecular docking is a key tool in computer drug design. The focus of molecular docking is to simulate the molecular recognition process. Molecular docking aims to achieve an optimized conformation for both the protein and drug with relative orientation between them such that the free energy of the overall system is minimized. In this context, the docked ligand was analysis with the human liver cancer 3cmf Hormone as shown in Figure 10.
The study simulates the actual docking process in which the ligand-protein pairwise interaction energies are calculated. The docking results are described in Table 13. From the analysis of the values, it is evident that the binding energy of the mutated ligand is less than that of unmutated ligand. Binding energies are most widely used mode of measuring binding affinity of a ligand. Thus, decrease in binding energy due to mutation will increase the binding affinity to the dithizone ligand.

Table 13. Energy values obtained in docking calculations of dithizone ligand with receptor liver cancer 3cmf.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>-7.44</td>
<td>3.54</td>
<td>-8.42</td>
<td>-0.06</td>
<td>-8.48</td>
</tr>
<tr>
<td>2.</td>
<td>-7.11</td>
<td>6.13</td>
<td>-8.21</td>
<td>-0.02</td>
<td>-8.22</td>
</tr>
<tr>
<td>3.</td>
<td>-5.71</td>
<td>65.67</td>
<td>-6.84</td>
<td>+0.02</td>
<td>-6.82</td>
</tr>
<tr>
<td>4.</td>
<td>-5.48</td>
<td>96.93</td>
<td>-6.57</td>
<td>+0.01</td>
<td>-6.57</td>
</tr>
<tr>
<td>5.</td>
<td>-5.44</td>
<td>102.55</td>
<td>-7.30</td>
<td>-0.03</td>
<td>-7.33</td>
</tr>
</tbody>
</table>

According to our results, HB plot curve indicate that, ligand binds to the protein with hydrogen bond. Interactions of ligand with 3cmf are shown in Figure 11. The calculated efficiency is favorable, Ki values estimated by AutoDock were compared with experimental Ki values, when available, and the Gibbs free energy is negative. Also, based on this data, we can propose that interaction between the 3cmf receptors and the ligand is possible.
4. Conclusion

The electrochemical behavior reduction or oxidation\cite{29, 30} of NiCl$_2$ was studied at different temperatures (293.15, 303.15, and 313.15K) in the presence of potassium ferrioxalate as mediators in 0.1 M citric acid since normally nickel ions gave no waves in acidic media. This method is simple to discuss the electrochemical behavior of Ni(II) ions. The cyclic voltammetry parameters were obtained for the electrode reaction of nickel chloride in absence and presence of dithizone (diphenylthiocarbazone). The measured NiCl$_2$ cyclic voltammetry was developed at different scan rates, which prove that electron transfer reaction was diffusion controlled in absence and presence of dithizone.

References

\cite{2} S. Tanimoto and A. Ichimura, "Discrimination of inner- and outer-sphere electrode reactions by cyclic voltammetry experiments," *Journal of Chemical Education*, vol. 90, pp. 778-781, 2013. Available at: https://doi.org/10.1021/ed200604m.

\cite{3} S. J. Hendel and E. R. Young, "Introduction to electrochemistry and the use of electrochemistry to synthesize and evaluate catalysts for water oxidation and reduction," *Journal of Chemical Education*, vol. 93, pp. 1951-1956, 2016. Available at: https://doi.org/10.1021/acs.jchemed.6b00230.

\cite{4} K. Schmidt-Rohr, "How batteries store and release energy: Explaining basic electrochemistry," *Journal of Chemical Education*, vol. 95, pp. 1801-1810, 2018. Available at: https://doi.org/10.1021/acs.jchemed.8b00479.

\cite{10} E. A. Gomaa and M. A. Tahoon, "Ion association and solvation behavior of copper sulfate in binary aqueous-methanol mixtures at different temperatures," *Journal of Molecular Liquids*, vol. 214, pp. 19-25, 2016.

